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Abstract. An ontology is a formal representation of a domain modeling the 
entities in the domain and their relations. When a domain is represented by 
multiple ontologies, there is a need for creating mappings among these 
ontologies in order to facilitate the integration of data annotated with and 
reasoning across these ontologies. The objective of this paper is to present our 
experience in aligning two medium-size anatomical ontologies and to reflect on 
some of the issues and challenges encountered along the way. The anatomical 
ontologies under investigation are the Adult Mouse Anatomy (MA) and the 
anatomy subset of the NCI Thesaurus (NCI). We also use the Foundational 
Model of Anatomy as a reference ontology. We present a hybrid alignment 
strategy for anatomical entities, combining direct and indirect alignment 
techniques, both supported by the NLM Anatomy Ontology Alignment System 
(AOAS). Overall, the hybrid strategy combining direct and indirect alignment 
techniques identified 1,338 matches between MA and NCI, accounting for 
about 49% of all MA concepts and 41% of all NCI concepts. 1,007 matches are 
shared by both alignments, leaving 277 matches specific to the direct alignment 
and 54 specific to the indirect alignment. 

1  Presentation of the system 

An ontology is a formal representation of a domain modeling the entities in the 
domain and their relations. Many domains, including anatomy, are represented by 
multiple ontologies, with variable overlap among them. There is a need for creating 
mappings among these ontologies in order to facilitate the integration of data 
annotated with and reasoning across these ontologies [1]. 

1.1  Introduction 

Over the past five years, as part of the Medical Ontology Research project at the U.S. 
National Library of Medicine, we have developed domain knowledge-based 
techniques for aligning large anatomical ontologies, with the objective of exploring 
approaches to aligning representations of anatomy differing in formalism, structure, 
and domain coverage [2]. In this effort, we aligned the two anatomical ontologies 
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under investigation in the 2007 OAEI campaign, namely, the Adult Mouse Anatomy 
(MA) [3] and the anatomy subset of the NCI Thesaurus (NCI) [4]. More precisely, we 
explored two distinct approaches to aligning these two ontologies. The first approach 
is a direct alignment realized with the NLM Anatomy Ontology Alignment System 
(AOAS) [5]. The second approach is an indirect alignment through a reference 
ontology of anatomy: the Foundational Model of Anatomy (FMA) [6]. In the current 
study, we then combine these two alignment techniques into a hybrid strategy. To our 
knowledge, the combination of direct and indirect approaches represents a novel 
strategy for aligning ontologies. 

1.2  Hybrid alignment strategy 

The hybrid strategy for aligning anatomical entities combines direct and indirect 
alignment techniques, both supported by the NLM Anatomy Ontology Alignment 
System (AOAS). 

Direct alignment 

The direct alignment technique consists in the identification of one-to-one concept 
mappings between the MA and NCI using lexical resemblance between concept 
names, followed by the validation of the mappings through shared hierarchical paths 
among concepts across ontologies. A brief presentation of the method is given below. 
The interested reader is referred to [2] for further details. 

Identifying matches lexically. The lexical alignment compares two ontologies at 
the term level, by exact match and after normalization. This process makes the source 
and target terms potentially compatible by eliminating such inessential differences as 
inflection, case, hyphen, and word-order variation. Both preferred terms and 
synonyms in the two ontologies are used in the alignment process. Moreover, 
synonymy in the Unified Medical Language System (UMLS) Metathesaurus is used 
to identify additional matches. For example, Profunda femoris artery in MA and 
Deep femoral artery in NCI, although lexically different, are considered as a match 
because they name the same anatomical concept in the UMLS. Our method does not 
address partial lexical matches. 

Validating matches structurally. In order to facilitate the comparison of relations 
across ontologies, the structural alignment first normalizes the hierarchical relations 
among concepts, including IS-A and PART-OF. Missing inverse relations are 
complemented as necessary. Inference rules are used to generate a partitive relation 
between a specialized part and the whole or between a part and a more generic whole.  
Once all relations are represented consistently, the structural alignment is applied on 
the matches resulting from the lexical alignment in order to identify similar relations 
to other matches across ontologies (i.e., shared hierarchical paths). For example, the 
matching concepts Forelimb in MA and Upper extremity in NCI exhibit similar 
relations to other matches in the two ontologies, including Limb (through IS-A), Arm 
and Hand (through HAS-PART) across ontologies. Such structural similarity is used as 
positive evidence for the alignment. Instead of similar relations, one match may 



exhibit relations to other matches in opposite directions in the two ontologies. Such 
relations suggest a structural conflict across ontologies. For example, in MA 
Pericardial cavity is in HAS-PART relationship to Pericardium, while in NCI 
Pericardial cavity is defined as part of Pericardium. These conflicts are used as 
negative evidence for the alignment, indicating the semantic incompatibility between 
concepts across ontologies despite their lexical resemblance. In some cases, no 
evidence (positive or negative) is found to support or reject the match. 

Indirect alignment 

An alternative to aligning MA and NCI concepts directly consists in the identification 
of mappings through a reference ontology, here, the Foundational Model of Anatomy 
(FMA). In practice, the following method was used for automatically deriving a 
mapping between MA and NCI from the two direct alignments MA-FMA and NCI-
FMA. When a FMA concept CF is aligned with both a MA concept ({MA: CM, FMA: 
CF}) and a NCI concept ({NCI: CN, FMA: CF}), the concepts CM and CN are 
automatically aligned ({MA: CM, NCI: CN}). 

For example, as shown in Figure 1, the direct alignment MA-FMA identifies the 
match {MA: Forelimb, FMA: Upper limb (synonym: Forelimb)}, which is supported 
by positive evidence. The direct alignment NCI-FMA identifies the match {NCI: 
Upper extremity, FMA: Upper limb (synonym: Upper extremity)}, also supported by 
positive evidence. Therefore, the match {MA: Forelimb, NCI: Upper extremity} is 
derived automatically, through the FMA concept Upper limb, supported by positive 
structural evidence in both direct alignments. 

The direct alignment method between MA and FMA (and between NCI and FMA) 
follows the same steps described above for the direct alignment between MA and 
NCI. Additional knowledge augmentation techniques are used to acquire and 
normalize relations from the FMA, including the extraction of partitive reified 
relations from terms (e.g., <Heel, PART-OF, Foot> was derived from <Heel, IS-A, 
Subdivision of foot>). 

In the indirect alignment through a reference ontology, where an indirect match 
(e.g., between CM and CN) results from two direct matches to the reference (e.g., 
between CM and CF and between CN and CF), the evidence for the indirect match is the 
combination of the evidence for the two direct matches to the reference. Intuitively, 
the strongest mappings correspond to those cases supported by positive evidence in 
both direct alignments. Weaker mappings are identified when positive evidence is 
found in only one of the two direct alignments and no evidence is found in the other. 
The weakest mappings correspond to cases where no evidence is found in either direct 
alignment. Finally, mappings exhibiting negative evidence in either direct alignment 
are rejected. 
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Figure 1. Indirect MA-NCI alignment through FMA 

Combining direct and indirect alignment techniques 

Although most mappings are identified by both direct and indirect alignments, we 
showed that each technique also produced specific mappings. Therefore, we propose 
to combine the mappings yielded by the two alignment techniques. In practice, a 
mapping can be identified by either technique or by both techniques. Moreover, the 
degrees of confidence attached to each mapping in the direct and indirect alignments 
can also be combined, resulting in a composite score reflecting the overall degree of 
confidence in the mapping. 

In the direct alignment, direct matches can be supported by positive structural 
evidence, negative structural evidence, or no evidence. In the indirect alignment, as 
mentioned earlier, the degree of confidence in the matches goes from strong positive 
evidence (in both direct alignments), weak positive evidence (in only one direct 
alignment), no evidence (in either alignment). In all cases, the presence of negative 
evidence in either alignment causes the mapping to be rejected. 

Intuitively, for the combined alignment strategy, the strongest mappings 
correspond to matches supported by positive evidence in both direct and indirect 
alignments. The presence of negative evidence in either alignment causes the 
mapping to be rejected. Otherwise, an additive model is used to combine degrees of 
evidence. The credit given to those matches specific to either direct or indirect 
alignment corresponds to one half of what they would receive if confirmed in the 
other alignment. The numeric scores reported in the results for the various 
combinations are summarized in Table 1. 



 

Table 1. Degree of confidence for various combinations of support in direct and indirect 
alignments 
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1.3  Adaptations made for the evaluation 

In previous alignment experiments, we purposely stayed away form any particular 
formalism in order to avoid overfitting tools and techniques to a given formalism. 
Since our alignment approach is not designed to specifically take advantage of OWL, 
we simply extracted concept names and <concept, relationship, concept> triples from 
the class definitions in OWL. In addition to the files provided for MA and NCI (in 
OWL DL), we used the file provided last year in the OAEI 2006 campaign for the 
FMA (in OWL Full) as our reference ontology. 

In practice, we used rdf:ID to identify concepts, rdf:label to acquire concept names, 
oboInOwl:hasRelatedSynonym to acquire synonyms, and rdfs:subClassOf to acquire 
taxonomic relations. The various partitive relations represented in the FMA (e.g., 
part_of, constitutional_part_of, regional_part_of) were acquired using the 
corresponding properties and merged – for alignment purposes – with 
UNDEFINED_part_of in MA and NCI. The other properties (e.g., 
oboInOwl:Definition) were not used in the alignment. 

1.5  Link to the set of provided alignments (in align format) 

The result of our alignment for the ‘anatomy’ data set is available at: 
http://mor.nlm.nih.gov/pubs/supp/2007-oaei-sz/Zhang&Bodenreider.rdf in the format 
specified by the OAEI organizers at: http://oaei.ontologymatching.org/2007/. 

2  Results 

The only data set for which we report results is ‘anatomy’. Overall, the hybrid 
strategy combining direct and indirect alignment techniques identified 1,338 matches 
between MA and NCI, accounting for about 49% of all MA concepts and 41% of all 
NCI concepts. 



Acquiring concept names and relations. The main characteristics of the data sets 
under investigation are listed in Table 2, including the number of classes, concept 
names, and types of partitive relationships. The number of IS-A and partitive relations 
extracted from the OWL file and generated by complementation, augmentation and 
inference is shown in Table 3. Not surprisingly, in the three ontologies, a majority of 
relations come from inference, which performs similarly to a transitive closure of the 
hierarchical relations. Also listed in Table 3 is the small number of relations removed 
from the FMA because they create cycles. 

Table 2. Main characteristics of the three ontologies 

# MA NCI FMA 

Concepts 2,738 3,298 72,560 

Normalization of preferred terms 3,024 3,586 98,942 

Synonyms 324 1,796 44,597 
Normalization of synonyms 370 1,947 60,051 
Part-of relationships 1 1 7 

Table 3. Number of relations in the three ontologies 

Types of relations MA NCI FMA 
Explicitly represented is-a 2,857 3,761 72,560 
Explicitly represented partitive relations 1,631 1,662 101,161 
Explicitly represented associative relations 0 0 48,804 
Complemented inverse-isa 2,857 3,761 72,560 
Complemented partitive relations 1,631 1,662 3,561 
Complemented associative relations 0 0 11,697 
Removed because of cycles 0 0 - 40 
Augmented  0 0 169,378 
Inferred 23,504 35,092 5,169,034 
Total 32,480 45,938 5,648,715 

 
Three direct alignments. Results for three direct alignments are summarized in 

Table 4. The alignment NCI-FMA yielded the largest number of matches (2,314) and 
MA-NCI the smallest (1,284). A very small number of conflicts (matches exhibiting 
negative evidence) was identified in each direct alignment. In the three direct 
alignments, a vast majority of the matches (> 96%) was supported by positive 
structural evidence. No evidence (positive or negative) was found for 2-4% of the 
matches in three direct alignments. For example, although Elbow joint has relations to 
other matches in both MA (e.g., PART-OF Forelimb) and NCI (e.g., PART-OF Skeletal 
system), none of these relations are shared. 



 

Table 4. Three direct alignments 

 
MA - NCI 

1,284 matches 
MA - FMA 

1,562 matches 
NCI - FMA 

2,314 matches 
No evidence 25 (1.9%) 49 (3.1%) 85 (3.7%) 
Positive evidence 1,254 (97.7%) 1,507 (96.5%) 2,215 (95.7%) 
Negative evidence 5 (0.4%) 6 (0.4%) 14 (0.6%) 

 
Indirect alignment MA-NCI through FMA. 1,061 matches between MA and 

NCI were automatically derived from the 1,562 matches in the direct alignment MA-
FMA and the 2,314 matches in NCI-FMA. 1,008 of them (95%) received positive 
structural evidence in both direct alignments MA-FMA and NCI-FMA, 15 (1.4%) 
received negative evidence in one of the two direct alignments, and 38 (3.6%) 
received no evidence in at least one of the two direct alignments.  

Combining direct and indirect alignments. Of the 1,284 matches obtained by 
direct alignment and 1,061 matches derived from the indirect alignment through the 
FMA, 1,007 matches are shared by both alignments, leaving 277 matches specific to 
the direct alignment and 54 specific to the indirect alignment. The repartition of the 
matches with respect to the degree of confidence is presented in Figure 2. 
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Figure 2. Repartition of the matches with respect to the degree of confidence 

Matches in common. Of the 1,007 matches common to both alignments, 947 
(94%) received positive evidence in the direct alignment and strong positive evidence 
in the indirect alignment. 15 matches (1.5%) received negative evidence in at least 
one of the alignments and were therefore eliminated. All but one of the remaining 
matches received positive evidence in one alignment and no evidence in the other. 
One match did not receive any evidence in either alignment. For example, the match 
{MA: Forelimb, NCI: Upper Extremity}is common to both alignments and receives 
positive evidence in the direct alignment and strong positive evidence in the indirect 
alignment. 



Matches specific to the direct alignment. The direct alignment yielded 277 
matches that were not identified by the indirect alignment. All but one received 
positive evidence and one received no evidence. For example, the match {MA: tibial 
artery, NCI: Tibial Artery} is specific to the direct alignment and receives positive 
evidence. 

Matches specific to the indirect alignment. The indirect alignment yielded 54 
matches that were not identified by the direct alignment. A majority of them (51 or 
94%) received positive evidence (weak in 4 cases) and one received no evidence. 
Two matches received negative evidence and were eliminated. For example, the 
match {MA: ovary follicle, NCI: Ovarian Follicle} is specific to the indirect 
alignment (through the FMA concept Follicle of ovary) and receives strong positive 
evidence. 

3  General comments 

3.1 Comments on the results 

The objective of combining several approaches is to increase recall and precision over 
each technique used in isolation. We note a significant increase in recall compared to 
the indirect alignment (1,338/1,061 or +26%) and a more modest increase compared 
to the direct alignment (1,338/1,284 or +4%). From a qualitative perspective, 
although most matches are common to both approaches, each technique contributes a 
number of specific matches. 

In terms of precision, the use of two independent techniques represents a form of 
cross-validation of the matches. While insufficient for a completely automated 
mapping strategy, this validation method can help establish a degree of confidence in 
the matches, based on corroborated findings across alignment techniques. This degree 
of confidence can be used to guide the effort of manually curating the matches, by 
targeting those matches identified with a lesser confidence. 

The scoring strategy presented in this paper (Table 1) also offers a more precise 
framework for estimating precision. In fact, while most alignment systems use some 
kind of arbitrary threshold over a continuous score between 0 and 1, the scheme we 
use for scoring the quality of the mappings is totally transparent and mathematically 
sound. Unlike most systems, the scoring system based on our hybrid approach 
attaches an explanation to each score (e.g., .75 consistently means that the lexical 
match is supported by positive evidence in one alignment, but uncorroborated in the 
other). The scoring scheme is also mathematically sound as it simply averages the 
scores from both direct and indirect alignments, except in the case where negative 
evidence is found, in which case the matches are excluded. 



3.2 Discussion on the way to improve the proposed system 

The strengths and weaknesses of our system have been analyzed in previous papers 
[7]. The major difference with other systems is that we take advantage of domain 
knowledge throughout the mapping process. For example, we use specific tools and 
resources, including normalization techniques developed for biomedical terms and 
synonyms from the Unified Medical Language System. We also developed techniques 
specific to the anatomical ontologies under investigation in order to represent 
explicitly relations implicitly present in these ontologies. These additional synonyms 
and relations increase the chances of identifying matches both at the lexical and 
structural level. 

In a recent analysis of the matches produced by several systems for the alignment 
between FMA and GALEN in the 2006 OAEI campaign [8], we noted a small number 
of false negatives in our system. Alignment systems such as FALCON [9] and PRIOR 
[10] are based on an information retrieval paradigm and accommodate partial 
matches. Thus, they tend to handle gracefully the kinds of spelling variation (and 
sometimes misspelling) encountered in some anatomical ontologies. In contrast, with 
a stricter, domain-specific model of lexical similarity, our system has a better 
precision, but is more sensitive to missing synonyms and misspellings. 

As mentioned before, our alignment strategy does not take advantage of the textual 
definitions available for most concepts in NCI. Textual definitions are not 
systematically present in anatomical ontologies and require natural language 
processing to be meaningfully interpreted. For these two reasons, we did not use 
them, nor do we have any plans to do so in the future. 

3.3 Comments on the OAEI 2007 procedure 

Unlike the FMA and GALEN in the 2006 OAEI campaign, provided in OWL Full 
after conversion from their native environments (Protégé-frames for the FMA and 
GRAIL for GALEN), MA and NCI are provided this year in OWL DL, which is the 
native format for NCI and an easy conversion from the Open Biological Ontology 
(OBO) format for MA. This simpler formalism, along with the smaller size and 
limited complexity of MA and NCI compared to FMA and GALEN, made the 2007 
OAEI campaign for anatomy more interesting as it made it possible for the 
participants to focus on alignment issues. 

Moreover, there exists a gold standard mapping between MA and NCI developed 
by biologists at the Jackson Laboratory. This will be the first time in the young 
history of the OAEI campaign that such a reference mapping is provided for 
anatomical ontologies. Although limited to equivalent concepts, this mapping will 
make the evaluation much more meaningful as we demonstrated that mere cross-
validation among alignment systems was not adequate for evaluation purposes [8]. 



3.4 Comments on the OAEI 2007 test cases 

Every year, the anatomy test case is one of the most challenging test cases in the 
OAEI campaign, generally because of the sheer size of the ontologies to be aligned, 
as well as the level of domain expertise required. Nonetheless, the anatomy task has 
attracted a growing number of participants over the years. However, we have shown 
that the performance of most participating systems, usually general-purpose, domain-
independent alignment systems applied to the anatomy task, is generally mediocre [8]. 
Beside absolute performance, it is interesting to see the progress made by some 
systems (e.g., FALCON), due in part to the stimulation generated by the OAEI 
campaign and enabled by the availability of large test datasets. 

4  Conclusion 

Anatomy is central to biomedicine and a key element to translational medicine, i.e., 
the effective exchange of information between the “bench” (basic research) and the 
“bedside” (clinical practice). While aligning large anatomical ontologies remains 
challenging, because of the sheer size of these resources and the need for domain 
knowledge, the progress made in the past years is encouraging. By providing a forum 
for comparing methods and datasets for evaluation purposes, the OAEI campaign has 
contributed significantly to this progress. 
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