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Abstract 
Corpus-derived distributional models of semantic 
distance between terms have proved useful in a number 
of applications. For both theoretical and practical 
reasons, it is desirable to extend these models to encode 
discrete concepts and the ways in which they are related 
to one another. In this paper, we present a novel vector 
space model that encodes semantic predications derived 
from MEDLINE by the SemRep system into a compact 
spatial representation. The associations captured by this 
method are of a different and complementary nature to 
those derived by traditional vector space models, and the 
encoding of predication types presents new possibilities 
for knowledge discovery and information retrieval. 

Introduction 
The biomedical literature contains vast amounts of 
knowledge that could inform our understanding of 
human health and disease. Much of this literature is 
available as electronic text, presenting an opportunity for 
the development of automated methods to extract and 
encode knowledge in computer-interpretable form. 
Distributional models of language are able to extract 
meaningful estimates of the semantic relatedness 
between terms from unannotated free text. These models 
have proved useful in a variety of biomedical 
applications (for a review see (1)), and include recent 
variants that scale comfortably to large biomedical 
corpora such as the MEDLINE corpus of abstracts (2). 
However, the semantic relatedness estimated by most 
distributional models is of a general nature. These models 
do not encode the type of relationship that exists between 
terms, which limits their ability to support logical 
inference. Furthermore, while distributional models such 
as Latent Semantic Analysis (LSA) simulate human 
performance in many cognitive tasks (3), they do not 
represent the object-relation-object triplets (or 
propositions) that are considered to be the atomic unit of 
thought in cognitive theories of comprehension (4). In 
this paper we address these issues by defining 
Predication-based Semantic Indexing (PSI) a novel 
distributional model of language that encodes semantic 
predications derived from MEDLINE by the SemRep 
system (5) into a compact vector space representation. 
Associations captured by PSI complement those captured 
by existing models, and present new possibilities for 
knowledge discovery and information retrieval. 

Background 
Many existing distributional models draw their estimates 
of semantic relatedness from co-occurrence statistics 
within a defined context such as a sliding window or an 
entire document (1). While recent models (reviewed in 
(6)) instead define as a context grammatical relationships 
produced by a parser, these models do not encode the 
nature of this grammatical relationship in a retrievable 
manner. The emergence of distributional models that 
incorporate word order (7), (8) has shown that it is 
possible to encode and retrieve additional information 
within a vector space. These models achieve this end by 
using either convolution products (7) or permutation of 
sparse random vectors (8) to transform vectors used to 
represent terms into new representations that are close-
to-orthogonal to the original vectors. Consequently there 
is very little overlap in the information they carry, and 
additional information related to term position can be 
encoded. These transformations are reversible, to 
facilitate retrieval of this information. 

PSI is based on Sahlgren and his colleagues' model 
which uses permutations as a means to encode word 
order information (8), which in turn is a variant of the 
Random Indexing (RI) approach to distributional 
semantics (9). This approach provides a simple and 
elegant solution to the problem of reversibly 
transforming term vectors using permutations of the 
sparse random vectors which form the basis of RI. 
Sahlgren et al's approach is derived from sliding-window 
(or term-term) RI, which bases its vector representations 
for terms on their co-occurrence with other terms in a 
sliding window moved through the text. While the 
sliding window approach is well-established in 
distributional semantics, established methods either use 
the full term-by-term space or reduce the dimensionality 
of this space using the computationally demanding 
Singular Value Decomposition (SVD). RI is able to 
achieve this dimension reduction step at a fraction of the 
computational cost of SVD by constructing semantic 
vectors for each term on-the-fly, without the need for a 
term-by-term matrix. Each term in the text corpus is 
assigned an elemental vector of dimensionality d (usually 
in the order of 1000), the dimension of a reduced-
dimensional semantic space within which the semantic 
relatedness of terms will be measured. These elemental 
vectors are sparse: they contain mostly zeros, with in the 
order of 10 non-zero values of either +1 or -1. As there 



        
       

         
        

        
        

    
        

           
         

          

    

          
        

         
          

        
  

           
       

        
         

         
       

         
      

         
           

     
             

        
      

        
  

        

          
         

       
       

      
    

        
        
        
        

        
         

          
    
       

   

          
        

         

      
      

        
      

       
        

       
        

      
          

        
       

           
       

        
          

           
         

         
        

      
       

          
        
          

       
             

         
         

       
         

         
        

        
     

          
       

       
         

      

are many possible permutations of these few non-zero 
values, elemental vectors tend to be close-to-orthogonal 
to one another: their relatedness as measured with the 
commonly used cosine metric tends towards zero. This 
approximates a full term-by-term matrix, but rather than 
assigning in orthogonal dimension to each term, RI 
assigns a close-to-orthogonal reduced-dimensional 
elemental vector. To encode additional information to do 
with word order, the elemental vector for a given term is 
permuted to produce a new vector, almost orthogonal to 
the vector from which it originated. Consider the low-
dimensional approximations of elemental vectors below: 

V1: [ 1 0 0 0 0 1 0 0 0 0 0 -1 0 0 0] V2: [ 0 1 0 0 0 0 1 0 0 0 0 0 -1 0 0] 

These two vectors are orthogonal to one another: as there 
is no common non-zero dimension between them, their 
cosine (or normalized dot-product) will be zero. V2 was 
derived from V1 by rotating every value one position to 
the right, and conversely this transformation can be 
reversed by rotating every value in V2 one position to the 
left. This simple procedure is used by Sahlgren et al to 
encode word-order information into a term-term based 
semantic space. The semantic vector for each term 
consists of the normalized linear sum of the permuted 
elemental vector for every term with which it co-occurs, 
with permutation encoding the relative position and 
direction of each term in the sliding window. The 
reversible nature of this transformation facilitates order-
based retrieval. For example, a rotation one position to 
the right of all elements of the elemental vector for a 
term can be used to generate a vector with high similarity 
to terms occurring one space to the left of it. Table I 
provides some examples of order-based retrieval in a 
permutation-based space created from the MEDLINE 
corpus of abstracts using the Semantic Vectors package, 
to which author TC is a contributor (10). 

? cancer streptococcus ? ? cough 

.81:breast .71:pyogenes .89:whooping 

.78:colorectal .71:agalactiae .48:nonproductive 

.74:prostate .69:pyogens .47:hacking 

.69:antiprostate .65:milleri .44:brassy 

.67:antibreast .62:acidominimus .42:barking 

Table I: Order-based retrieval from MEDLINE. The “?” 
denotes the relative position of the target term. 

In this paper, we adapt Sahlgren et al's method of 
encoding word order information into a vector space to 
encode semantic predications produced by the SemRep 
system (5), (11). SemRep combines general linguistic 
processing, a shallow categorical parser and 
underspecified dependency grammar, with domain-
specific knowledge resources: mappings from free text to 
the UMLS accomplished by the MetaMap software (12), 
the UMLS metathesaurus and semantic network (13) and 
the Specialist lexicon and lexical tools (14). SemRep 

uses these techniques to extract semantic predications, 
from titles and abstracts in the MEDLINE database, as 
shown in this example drawn from (5). Given the excerpt 
“… anti-inflammatory drugs that have clinical efficacy in 
the management of asthma,....”, SemRep extracts the 
following semantic predication between UMLS concepts: 

“Anti-Inflammatory Agents TREATS Asthma” 

We present in this paper a description of the theoretical 
and methodological basis of PSI, and include examples 
of the sorts of information the model encodes and 
retrieves discussed in context of possible applications. 

Methods 
We have derived a PSI space from a database of semantic 
predications extracted by SemRep from MEDLINE 
citations dated between 2003 and September 9th 2008. 
13,562,350 predications were extracted from 2,634,406 
citations by SemRep. Of these, predications involving 
negation (such as “DOES NOT TREAT”) are excluded, 
leaving 13,380,712 predications which are encoded into 
the PSI space. We encode this predication information 
using permutation-based RI. Rather than assigning 
elemental vectors to each term as in Sahlgren et al's 
model, we assign sparse elemental vectors (d=500) to 
each UMLS concept contained in the predications 
database. We then assign a unique number to each of the 
included predication types (such as “TREATS”). We 
create semantic vectors (d=500) for each UMLS concept 
in the database, and every time a given UMLS concept 
occurs in a predication, we add to its semantic vector the 
elemental vector of the other concept in the predication. 
This elemental vector is permuted according to the type 
of the predication. For example, in the predication “Anti-
Inflammatory Agents TREATS Asthma” we would add to 
the semantic vector for Anti-Inflammatory Agents but 
rotate every element in this 39 (the number assigned to 
the predicate “TREATS”) steps to the left. Conversely, 
we would add to the semantic vector for Asthma the 
index vector for Anti-Inflammatory Agents rotated 39 
steps to the right. In this way we are able to encode the 
type of predication that exists between these concepts. 

We also construct a general distributional model of the 
UMLS concepts in the database of predications using the 
Reflective Random Indexing (RRI) model (15), by 
creating document vectors for each unique PubMed ID in 
the database. Document vectors are created based on the 
terms contained in these citations: elemental vectors are 
assigned to each term, and document vectors are 
constructed as the normalized linear sum of the elemental 
vector for each term they contain. Rather than using raw 
term frequency, we employ the log-entropy weighting 
scheme, shown to enhance document representations in 
several applications (3). A vector for each concept is 
constructed as the frequency-weighted normalized linear 
sum of the vector for each document it occurs in. 



        
         

       
        

       
        

         
        

          
       

     
          
         

         
          

         
          

        
       

         
     

        
       

     
        

         
     

        
      

         
 

   

   

 

 

 

 

 

        
        

        
        

          
        

       
         

         
         

         
         

        
         

       
      

        
         

         
 

        
        

            
        

        
         

         
         
       

       
      

       
        

        
          

         
         

        
        

        
       

      

PSI requires a modification of the conventional nearest 
neighbor approach, as we are interested in the strongest 
association between concepts across all predications. In 
the modified semantic network used by SemRep (16), 
there are 40 permitted predications between concepts 
when negations (e.g. exercise DOES NOT TREAT hiv) 
are excluded. Semantic distance in PSI is measured by 
extracting all permutations of a concept, and comparing 
the second concept to these to find the predication with 
the strongest association. For elemental vectors, we 
employ a sparse representation used in our previous work 
(2) which represents the dimension and sign of each of 
the 20 non-zero values. This allows for rapid generation 
of all possible permutations by augmenting the value that 
represents the index of each non-zero value. To speed up 
this process in the EpiphaNet example (Figure 1), we 
extract the 500 nearest neighbors to a cue concept from 
the general distributional space (this should subsume the 
predication-based space: every concept in a predication 
must co-occur in a citation with the other concept 
concerned). We then perform predication-based nearest-
neighbor search on these neighbors only. 

Results and Discussion 
Predication-based retrieval 
In a manner analogous to the order-based retrieval 
illustrated previously, it is possible to perform 
predication-based retrieval using permutations to 
determine which UMLS concept the model has encoded 
with strong association to another concept in a particular 
predication relationship. Table II illustrates predication-
based retrieval. For example, the query “? TREATS 
Asthma” retrieves concepts for asthma treatments (sb-
240563 is also known as Mepolizumab, and has recently 
been shown to reduce exacerbations in asthma (17)) . 

? TREATS Asthma Metronidazole TREATS ? 

1:cetirizine- .57: chronic intestinal 
pseudoephedrine amebiasis 

1: norisodrine .36 : urogenital trichomonas 
nos 

1: alvesco 0.35: erythema annulare 
centrifugum 

1: salmeterol+fluticasone 0.33: vaginalis 
propionate 

1: sb-240563 0.27: endocervicitis, 
unspecified 

Table II: Predication-based retrieval with  cosine 
associations between query and target concepts. 

Interestingly, the top ranked results are not necessarily 
the concepts that occur most frequently in this 
predication relationship – rather, these results reflect the 
extent to which this relationship defines a particular 
concept, as the model represents concepts in terms of the 
predications in which they occur in an extensional 

manner. Concepts occurring exclusively in a particular 
predication with another concept are likely to rank highly 
in predication-based retrieval. As this is not ideal for 
many purposes, our future work will explore variants of 
PSI that select for frequency rather than exclusivity. 

Predication-based Nearest Neighbor Search 

Figure I: EpiphaNet for “staphylococcus aureus”
�

It is possible to rapidly characterize a particular concept 
for exploratory purposes by first finding the k nearest 
neighbors in a general associative space, and searching 
amongst these for the best predications using PSI. Figure 
I illustrates the nearest predication-based neighbors of 
the concept “staphylococcus_aureus” which we have 
extracted and visualized with the EpiphaNet software we 
have developed for this purpose. EpiphaNet is based on 
the Prefuse visualization library (18) and as in our 
previous work (2) uses Pathfinder network scaling (19) to 
reveal the most significant associative links within a 
network of near neighbors. By reversing the encoding 
process used in PSI, we are able to retrieve both the type 
and direction of the predication relationship linking these 
concepts. This measure of semantic distance is different 
in nature to those used in prior distributional models. 
Rather than conflating many types of association into a 
single metric, this estimate is based on the strongest 
typed association between these concepts across all 
predication-based relationship Similarly to the way in 
which existing distributional models extract compact 
vector-based term representations from large corpora, the 
PSI model produces a compact representation for all 
UMLS concepts in the 8.8GB database of semantic 
predications. The set of semantic vectors used for the PSI 
space used to generate Figure I occupies 300MB only, 
and stored elemental vectors occupy a fraction of this 
space due to the sparse representation employed. To 
further assess the extent to which predications are 
accurately encoded and retrieved, we extract at random 
1000 concepts, and retrieve their 20 nearest predication-



        
       

        
        

  
   

         

         
        

 
         

         
       

         
       

       
         

        
          

        

 
        

         
        

      
          

      
         
       

         
         

       
        
           
       
         

         
         

         
        

      
         

       

 

  

           
        

        
   

          

    

      

 

        
      

        
       

    
         

         
        

        
       

         
      
        

       
           

  
           

 
         

       
         

            
          

        
       

           
       

       
         

        

based neighbors. We consider neighbors with a cosine 
association above a threshold of the mean cue-to-
neighbor association for these 1000 terms as “retrieved”. 
Using the database of predications extracted by SemRep 
as a gold standard, we calculate the following metrics: 

o Precision = retrieved and accurate / all retrieved 
o Recall = predications retrieved / minimum(20, up) 

where up denotes the number of unique predications for 
cue term in the database. Results are shown in Table III. 

Dimensionality 500 1000 1500 

Mean Precision 0.957 0.977 0.997 

Mean Recall 0.603 0.643 0.658 

Threshold cosine 0.320 0.279 0.265 

Table III: Results for 1000 randomly selected terms. 

The model performs better for cue concepts with fewer 
unique predications: recall when only concepts with 20 
or less unique predications are considered is 0.74, 0.8 and 
0.8 at 500, 1000 and 1500 dimensions respectively, with 
precision at 0.95 and above. This suggests that vectors 
for concepts involved in many predication relationships 
acquire a spurious similarity to other vectors due to 
partial overlap between permuted elemental vectors. We 
anticipate this overlap would reduce as dimensionality 
increases. In practice we find that concepts such as 
“patient” that are involved in many unique predications 
tend to be uninformative. It is also possible to eliminate 
spurious neighbors by only considering terms that occur 
in a document with the cue term as retrieval candidates. 

Implicit Encoding of Semantic Type 
As illustrated by the results of the cosine-based 
nearestneighbor search in Table IV, the PSI space to some 
extent captures the semantic class of UMLS concepts. 
The semantic vector for the disease “asthma” is similar to 
that for other diseases (and in this case, symptoms), just 
as “amitryptiline” retrieves other antidepressants through 
nearest neighbor search. This finding generalizes to a 
degree: amongst the ten-nearest neighbors of 1000 
randomly selected terms, an average of 37% share a 
UMLS semantic type with the cue term. This is 
considerably higher than the result of approximately 
4.5% obtained when the same evaluation is performed 
using either RI (9)or RRI (15) (all spaces at d=500), and 
varies across semantic types, with several semantic 
classes such as “plant” exhibiting in excess of 80% 
agreement between cue and neighbor. This is to be 
expected, as the extraction of predications by SemRep is 
constrained by the UMLS semantic type of the subject 
and object. However, further analysis of the interplay 
between assigned UMLS class and predication-based 
distributional similarity may be a useful way to reveal 
inconsistencies in the assignment of semantic class 
and/or the assignment of predications by SemRep. 

asthma amitryptiline 

.98: sickle cell anemia .82: imipramine 

.99 : heart septal defects, atrial .78: nortriptyline 

.99: chronic childhood arthritis .76: desipramine 

.98: diarrhea .75: clomipramine 

.98: constipation .65: amoxapine 

Table IV: Nearest-neighbor searches in PSI-space. 

Modeling Analogy 
We find it is possible to model analogy within the PSI 
space by finding the predication that most strongly 
associates two terms and applying the rotation that 
corresponds to this predication to a third. While this work 
is presently at an early stage of development, it has 
produced some interesting results so far (Table V). 

Example Cue Retrieved 

Tuberculosis is to Depressive Lexapro 
Isoniazid as..... disorder is to.. 

Tuberculosis is to Depressive Psychiatric Interview 
Lung X-ray as... disorder is to.. and Evaluation 

Table V: Analogical Reasoning in PSI-space 

Application to Information Retrieval 
Similarly to the way in which distributional models 
extract compact vector-based term representations from 
large corpora, the PSI model produces a compact 
representation of the predication relations captured by 
SemRep. The knowledge encoded in the PSI model could 
be used for information retrieval in several ways. One 
possibility would be to represent documents in terms of 
the predications contained therein, and allow users to 
search for documents containing concepts in a specific 
predication relationship with a search concept. We 
anticipate that once customized for this purpose, PSI will 
retrieve documents providing answers to clinical 
questions such as “what treats Tuberculosis” or “what 
causes Bullous Impetigo”. Another possibility would be 
the use of the approach taken in Figure I to categorize 
documents according to the way in which they are related 
to a particular search concept. In our future work we will 
evaluate these approaches on standard test collections. 

Application to Literature-based Knowledge Discovery 
In our recent work (2),(20),(15) we have used general 
distributional models to identify potential discoveries by 
identifying pairs of concepts that are relatively close in 
the space but do not co-occur in any of the documents in 
the database used to generate the models. Although this 
method has proven to be effective in identifying 
interesting indirect connections, the interesting ones tend 
to occur along with others of little interest. In general, 
additional constraints are needed to narrow the 
possibilities. The predications resulting from the methods 
presented here offer a promising means to limit the 
indirect connections by selecting those with appropriate 



      
         

 
       

        
 

 
       
         

        
      

 
 

         
     

        
       

        
       

           
       

         
          

       
        

           
        

          

        
         

         

 
 

  
      

      

        
       

     

       
        

       
      

    

      
     

      
       

        
         
       

       
       
        

       
      

       
     

  
 

 

  
 

 
      

    
      

     
  

 
  

 

 
 

 
 

 
  

 

 
 

 
 

   
 

 

 

predication relationships. For example, when looking for 
new treatments for a disorder, concepts that serve as 
treatments should be given priority over concepts in other 
predications. With these methods, general word space 
similarity can be elaborated into the greater specificity 
found in semantic network models (21). 

Limitations and Future Work 
This paper presents the theoretical and methodological 
basis for PSI, a novel distributional model that encodes 
predications produced by SemRep, and provides some 
illustrative examples and possible applications. Further 
analysis is needed to determine the model parameters that 
optimize performance in each of these tasks. In our future 
work we will explore applications of PSI to informatics 
problems, including information retrieval, knowledge 
discovery and  biomedical question answering. 

Conclusion 
PSI is a novel distributional model that encodes 
predications produced by the SemRep system, providing 
a more specific measure of semantic similarity between 
concepts than is provided by existing distributional 
models, as well as the ability to retrieve the type of 
predication that most strongly associates two concepts. 
From a theoretical perspective, this is desirable as the 
unit of analysis in cognitive models is considered to be 
an object-relation-object triplet, not an individual term. 
From a practical point of view, the additional information 
encoded by PSI is likely to be of benefit for information 
retrieval and knowledge discovery purposes. In our 
future work we will evaluate the application of PSI to 
these and other informatics problems. 
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