
Oral Cavity Anatomical Site Image Classification and Analysis 
Zhiyun Xue*a, Paul C. Pearlmanb, Kelly Yuc, Anabik Pala, Tseng-Cheng Chend, Chun-Hung Huae, 
Chung Jan Kangf, Chih-Yen Chieng, Ming-Hsui Tsaie, Cheng-Ping Wangd, Anil K. Chaturvedic, 

Sameer Antania

aLister Hill National Center for Biomedical Communications, National Library of Medicine, 
National Institutes of Health, Bethesda, MD 20894 

bCenter for Global Health, National Cancer Institute, National Institutes of Health, Rockville, MD 
20850

cDivision of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of 
Health, Rockville, MD 20850 

dNational Taiwan University Hospital, Taipei, Taiwan 
eChina Medical University Hospital, Taichung, Taiwan 

fChang Gung Memorial Hospital, Linkou, Taiwan 
gChang Gung Memorial Hospital, Kaohsiung, Taiwan 

ABSTRACT 

Oral cavity cancer is a common cancer that can result in breathing, swallowing, drinking, eating problems as well as 
speech impairment, and there is high mortality for the advanced stage. Its diagnosis is confirmed through histopathology. 
It is of critical importance to determine the need for biopsy and identify the correct location. Deep learning has 
demonstrated great promise/success in several image-based medical screening/diagnostic applications. However, 
automated visual evaluation of oral cavity lesions has received limited attention in the literature. Since the disease can 
occur in different parts of the oral cavity, a first step is to identify the images of different anatomical sites. We 
automatically generate labels for six sites which will help in lesion detection in a subsequent analytical module. We apply 
a recently proposed network called ResNeSt that incorporates channel-wise attention with multi-path representation and 
demonstrate high performance on the test set. The average F1-score for all classes and accuracy are both 0.96. Moreover, 
we provide a detailed discussion on class activation maps obtained from both correct and incorrect predictions to analyze 
algorithm behavior. The highlighted regions in the class activation maps generally correlate considerably well with the 
region of interest perceived and expected by expert human observers. The insights and knowledge gained from the 
analysis are helpful in not only algorithm improvement, but also aiding the development of the other key components in 
the process of computer assisted oral cancer screening. 
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1. INTRODUCTION
Oral cavity cancers are one of the most common cancers in the world, especially in Asia. According to WHO [1], the 
number of annual incidences and mortalities are around 380,000 and 180,000. One main contributing risk factor to oral 
cancers is the use and consumption of tobacco and alcohol, particularly smokeless tobacco and betel quid, which are 
major carcinogenic exposures in many low- and middle-income countries. The majority of oral cancers are squamous cell 
carcinomas (SCC), and the development of oral SCC are associated with a number of precursor lesions, such as 
leukoplakia and erythroplakia [2]. Like other cancers, early detection and prevention are important for reducing morbidity 
and death rate of oral cancer. In fact, oral cancer is often detected at late stage and has one of the lowest five-year survival 
rates (50% or less) among the major cancer types. Successful therapeutic management depends on a definitive, accurate, 
and timely diagnosis, so it is therefore crucial to identify and characterize precursor lesions. However, visual inspection 
of oral lesions is challenging since benign lesions can be easily confused with those that might be potentially malignant, 



particularly in early stage of the disease. Moreover, dysplasia/micro-invasive carcinomas can be present in clinically 
normal-appearing mucosa. Care-provider performance on predicting dysplastic oral lesions and oral SCC through visual 
inspection has been observed to be low and demands significant training and expertise [3].  
 
One way to improve visual inspection quality is to use automated computer-assisted techniques that leverage machine 
learning and image processing techniques. While these techniques have been proposed for photographic images of the 
oral cavity for the automatic detection of oral cancers and precursor lesions in recent years [4-6], the number of such 
studies in the literature is limited, especially for those that use a large dataset with biopsy confirmed cases. Following 
promising results in proof-of-concept studies reported in the literature for cancer screening applications (such as the 
automated visual evaluation (AVE) work for cervical cancer screening and triage [7]), we aim to investigate AVE for 
triage of screen detected oral lesions. Led by the US National Cancer Institute with performance sites in Rockville, MD 
and the four cities in Taiwan, a study aiming to thoroughly investigate the natural history of oral SCC was initiated, 
through which clients with and without precursor lesions are longitudinally followed and biopsies and photographic 
images of the oral cavity are serially obtained. In this study, for each patient, pictures of different anatomical sites, viz. 
right buccal mucosa, left buccal mucosa, top of the mouth, dorsal tongue, ventral tongue, floor of the mouth, as well as 
pictures of several most severe lesions were taken. Care-providers who take the pictures may label them with the name 
of the anatomical sites and information for lesions. However, labeling is tedious and may be inconsistent. To reduce the 
labeling labor cost, and improve data quality, as a first step, we have developed a classifier to automatically separate the 
images into different categories based on the main captured anatomical location sites using the pilot batch of 250 patients 
from the dataset. This anatomical site classifier is also one preprocessing step in our pipeline of the AVE. In addition, 
since it is relatively easy for human to tell/explain the differences of images of different sites which are related with spatial 
information that can be specified in the images, we consider it as a good application for analyzing and demonstrating 
whether the classifier makes correct prediction based on the information that aligns well with human 
understanding/interpretation and why the classifier might fail for certain images. In this paper, we report and present our 
effort and results on the site image classification since, to the best of our knowledge, there is no such work reported in the 
literature for oral cavity photographic images. In the following sections, we will provide detailed descriptions on the 
dataset and its ground truth labeling, the classification network and the network visualization method, the results of 
experiments conducted, the discussion and analysis of the results, and the future work inspired by the analysis.  
 

       

      

      

      

      

      
RB LB TM DT VT FM 

Figure 1. Example images from several patients 
 



2. DATASET 
The dataset we used for this task is the first batch consisting of 250 patients. According to the image collection protocol, 
for each precursor or cancer subject, the care-provider takes at least six pictures of the patient’s mouth during each clinic 
visit. There is one picture for each of the six sites:   1) right buccal mucosa (labeled as RB); 2) left buccal mucosa (labeled 
as LB); 3) top of the mouth (labeled as TM); 4) dorsal tongue (labeled as DT); 5) ventral tongue (labeled as VT); and, 6) 
floor of the mouth (labeled as FM). If there are lesions, a picture of each of the top three most severe lesions are captured 
with a ruler to aid in lesion size assessment.  In follow-up visits, pictures of all old and new lesions are taken and recorded 
on the oral examination form. The care-provider also names the files of the pictures with appropriate initials to indicate 
the (deidentified) patient ID, visit number, location site, and lesion number if applicable. For example, an image with 
name “HNC1001_B_RB_L1” is for subject ID HNC1001 at baseline from the right buccal mucosa and contains lesion 
number one. Based on this rule, we extracted the ground truth site label for each image. Not all images have location site 
specified (or specified with the defined site abbreviations) in the file name, and a patient may have several images of the 
same site from one visit or acquired during multiple follow-up visits. Figure 1 shows examples of images of several 
patients from different oral cavity sites. The images have variations in non-clinical factors such as illumination, view area 
and angle, ruler inclusion, in addition to factors related with subject or disease (such as the location, color and shape of 
the lip, teeth, tongue, and lesions).  

3. METHODOLOGY  
Deep learning has been actively studied to a great extent in the general image domain, especially for image classification. 
The deep networks usually have a huge number of parameters (in the order of millions) that are manipulated to achieve 
good performance. Therefore, large datasets are needed to train the network from the scratch to avoid overfitting in 
classification predictions. Like other medical domain applications which are limited by relatively small datasets, we 
started work with the networks that have ImageNet pretrained model available in order to take advantage of transfer 
learning. We selected the deep classification network called ResNeSt [8], a recent ResNet [9] variant network, to fine 
tune with our dataset in order to classify these images into six categories: RB, LB, TM, DT, VT, and FM, respectively. 
ResNeSt was proposed as an improvement over ResNet to aid in classification and downstream tasks with comparable 
computation cost. It incorporates channel-wise attention with multi-path representation and introduces a new block 
module called the “split attention” block. Specifically, in each “split attention” block, feature maps are first divided into 
several “cardinal groups” (as was done in one previous ResNet variant – ResNeXt [10]). Next, the feature maps in each 
cardinal group are separated channel-wise into subgroups (“splits”). The features across subgroup splits are combined 
(“attention”) before being concatenated for all the groups. ResNeSt also applies network tweaks and several training 
strategies (such as augmentation, label smoothing, drop out regularization, and batch normalization) to improve its 
generalizability. Detailed information on network hyperparameters and specific augmentation methods that we used is 
provided in the next section.  
 
Aside from high performance, we are also interested in examining whether the classification network makes the prediction 
based on the appropriate visual content in the image and understanding why the network does not classify certain images 
correctly. Deep network interpretation is a research area of growing interest. Surveys of various techniques are given in 
[11, 12]. Representative methods based on Convolutional Neural Networks (CNNs) include: saliency visualization map 
in [13], Local Interpretable Model-agnostic Explanations (LIMEs) [14], Class Activation Mapping (CAM) [15], and 
SHapley Additive exPlanations (SHAP) [16]. We applied GradCAM (Gradient-weighted Class Activation Mapping) [17] 
for the explanation of the classification results obtained by our ResNeSt model, given its ability to create high-resolution 
class-discriminative visualizations and provide insights into misclassified cases of the models. GradCAM is an 
improvement and generalization of CAM by using the gradient information flowing into the last convolutional layer of 
the CNN to indicate the neuron importance to the model’s decision. It can be applied to a large range of CNN architectures 
without the need to modify the architectures and retrain the models. We extracted the GradCAM heatmaps of all the 
images in each set. Specifically, we analyzed the success and failure cases in the test set and discussed them with 
epidemiologists.  In addition to GradCAM heatmaps, we also extracted the features in the ResNeSt model and examined 
the feature separability among different classes using t-SNE plots.  

 



4. EXPERIMENTAL RESULTS AND DISCUSSION 
Table 1 lists the total number of images for each site in the dataset selection that contains 250 patients. In the experiments, 
we divided the dataset into training, validation, and test set at patient level (with 180, 20, and 50 patients, respectively). 
Table 2 lists the number of images of each category in each set.  

 
Table 1. The number of images of each location site in the dataset 

 RB LB TM DT VT FM 
Num. of images 609 623 396 404 396 393 

 
Table 2. The number of images in each category in the training/validation/test set 
 RB LB TM DT VT FM 

Train Set 433 448 284 289 284 283 
Validation Set 52 55 35 37 34 34 

Test Set 124 120 77 78 78 76 
  
We used the ResNeSt50 network in our experiment. Since the dataset size is relatively small, we fine-tuned the ImageNet 
pretrained model with our training set. We also applied augmentation methods to increase the dataset size and improve 
the robustness of the model. We included random resized crop, color jittering, PCA normalization, random small rotation, 
and center crop. Note that we did not use the random horizontal/vertical flip, an augmentation method that is frequently 
used in other applications, as it would introduce confusion in differentiating class RB from LB. The loss function was 
categorical cross-entropy with label smoothing. The optimizer was Adam (β1 = 0.9, β2 = 0.999) with a learning rate of 
5x10-4. The image size for model training was 224 x 224 pixels, and the batch size was 64. The model was trained for 100 
epochs and the model at the epoch with the highest performance on validation set was selected.  
 
Table 3 lists the precision, recall, and F1 score of each class in the test set, as well as the macro average and weighted 
average of all classes for each of those three metrics. For precision, all classes have value higher than 0.95 except FM 
class whose value is 0.86. For recall, all classes have value no lower than 0.95 except VT class whose value is 0.88. The 
F1-score of each class is higher than 0.91 and the average F1-score on all classes is 0.96. The value of accuracy is 0.96. 
Figure 2 shows the confusion matrix chart obtained on the test set. From the confusion matrix chart, we can see, among 
these classes, the biggest confusion occurs between FM and VT. As some example images shown in Figure 1, the 
difference between images of these two classes might be very subtle and very challenging to differentiate. 

Table 3. Precision, recall, and F1 score on the test set 

 Precision Recall F1-score Num. of Images 
RB 0.98 0.98       0.98        124 
LB 0.98       0.99       0.99        120 
TM 1.00       0.96 0.98         77 
DT 0.96 0.95       0.95         78 
VT 0.96       0.88       0.92         78 
FM 0.86       0.96       0.91         76 
macro avg        0.96       0.96       0.96       553 
weighted avg        0.96       0.96       0.96       553 

 

To examine the representation and differentiation capability of features learned by the network, we extracted the features 
from the global average pooling layer in the model for the test images and visualized them with t-SNE plot. As shown in 
Figure 3, the features in different classes are very well separated.  
 
We created GradCAM heatmaps to examine which areas in the image contribute the most to the classification decision 
the network makes for an input image. Figure 4 shows several examples of images that were classified correctly by the 
model and their corresponding heatmaps. For images correctly classified as TM, DT, VT or FM, as shown in Figure 4 (c) 
– (f), the highlighted regions in heatmaps generally concentrate on the right region of interest in each class. For images 



correctly classified as either RB or LB, the highlighted regions in heatmaps are relatively more diverse than those of the 
other four classes. As shown in Figure 4 (a) and (b), it appears that information both inside the mouth and outside the 
mouth were considered by the network. In addition, when there is a ruler which was put to indicate the approximate region 
of suspected lesion, the ruler area is usually highlighted, suggesting the characteristics of the ruler (may be its location or 
perspective) may also be used as a clue by the network to make decisions. We plan to develop algorithms to detect or 
segment the ruler for the subsequent task of lesion detection as there are no lesion manual markings other than the 
information of the existence of a lesion in the dataset at present and it is time-consuming and tedious to mark the lesion 
region.  
 

  
Figure 2. The confusion matrix on the test set Figure 3. The t-SNE plot of the features 

 
 
We also examined the heatmaps of the 22 images that were misclassified. These heatmaps may shed a light on why the 
network does not classify the image correctly. Several representative examples are given in Figure 5. For example, in 
Figure 5(a) and (c), the highlighted area is not at the right location, indicating the network does not use the right 
information to make decision. Comparing Figure 5(c) and the last image in Figure 4(e) (which is from the same patient 
but classified correctly by the model), the highlighted areas are in different sites. In Figure 5(b), the heatmap shows it 
concentrates mainly on the tongue which takes a significant large area in the image. This may be the reason why the 
network considered it as DT instead of LB. Figure 5 (d) image contains a large portion of both TM and DT area and the 
network misclassified it as VT. The image in Figure 5(e) is actually incorrectly annotated. It should be VT and the network 
classification result is correct. We also noticed there were a few images in validation set and training set that were mis-
annotated while examining the results and heatmaps. It is common to have labeling errors in data collection due to human 
fatigue. A hybrid annotation approach in which users browse the automatic generated labels that are correct for the 
majority of images and only correct those misclassified ones would not only save time and effort but also reduce labelling 
errors. Some highlighted areas in the heatmap in Figure 5(f) are not within face/mouth but the background. We may 
consider removing background border regions in images for performance improvement in future. 

5. CONCLUSIONS 
In this paper, we report an important pre-step in developing an automatic approach toward improving the accuracy of 
visual evaluation for triage of screen detected oral lesions. Specifically, we applied deep learning technique to classify 
images captured from different major anatomical locations of the mouths to be inspected for oral cavity cancer assessment. 
The network achieves high classification accuracy on a randomly selected test set that is a subset from the pilot batch of 
data. In addition, we considered the network explanation and discussed the visualization results. Analysis and examination 
of both the correctly classified images and misclassified images lead to insights on where the network may concentrate 
and provide reasonable explanation on why the model derives certain predictions. They also demonstrate the effectiveness 
of the applied classification method. Based on the analysis, future work will explore topics such as background removal, 
ruler detection/segmentation, in addition to other main modules in the pipeline including lesion detection/segmentation, 
image quality control, and lesion classification.   
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Figure 4. GradCAM heatmaps of correctly classified images 

   
(a) DT predicted as FM (b) LB predicted as DT (c) VT predicted as FM 

   
(d) TM predicted as VT (e) FM predicted as VT (f) VT predicted as LB 

Figure 5. GradCAM heatmaps of in-correctly classified images 
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